Bagging Model Trees for Classification Problems
نویسندگان
چکیده
Structurally, a model tree is a regression method that takes the form of a decision tree with linear regression functions instead of terminal class values at its leaves. In this study, model trees are coupled with bagging for solving classification problems. In order to apply this regression technique to classification problems, we consider the conditional class probability function and seek a model-tree approximation to it. During classification, the class whose model tree generates the greatest approximated probability value is chosen as the predicted class. We performed a comparison with other well known ensembles of decision trees, on standard benchmark datasets and the performance of the proposed technique was greater in most cases.
منابع مشابه
Bagging Ensemble Selection for Regression
Bagging ensemble selection (BES) is a relatively new ensemble learning strategy. The strategy can be seen as an ensemble of the ensemble selection from libraries of models (ES) strategy. Previous experimental results on binary classification problems have shown that using random trees as base classifiers, BES-OOB (the most successful variant of BES) is competitive with (and in many cases, super...
متن کاملUsing Model Trees and Their Ensembles for Imbalanced Data
Model trees are decision trees with linear regression functions at the leaves. Although originally proposed for regression, they have also been applied successfully in classification problems. This paper studies their performance for imbalanced problems. These trees give better results that standard decision trees (J48, based on C4.5) and decision trees specific for imbalanced data (CCPDT: Clas...
متن کاملImproving reservoir rock classification in heterogeneous carbonates using boosting and bagging strategies: A case study of early Triassic carbonates of coastal Fars, south Iran
An accurate reservoir characterization is a crucial task for the development of quantitative geological models and reservoir simulation. In the present research work, a novel view is presented on the reservoir characterization using the advantages of thin section image analysis and intelligent classification algorithms. The proposed methodology comprises three main steps. First, four classes of...
متن کاملCTC: An Alternative to Extract Explanation from Bagging
Being aware of the importance of classifiers to be comprehensible when using machine learning to solve real world problems, bagging needs a way to be explained. This work compares Consolidated Tree’s Construction (CTC) algorithm with the Combined Multiple Models (CMM) method proposed by Domingos when used to extract explanation of the classification made by bagging. The comparison has been done...
متن کاملA Bagging Method using Decision Trees in the Role of Base Classifiers
This paper describes a set of experiments with bagging – a method, which can improve results of classification algorithms. Our use of this method aims at classification algorithms generating decision trees. Results of performance tests focused on the use of the bagging method on binary decision trees are presented. The minimum number of decision trees, which enables an improvement of the classi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005